Motion in a Gravitational Field

Another Look at Gravitational Potential Energy

- We previously noted that it took work to lift an object off the surface of the earth.
- In more general terms, it takes work to separate two objects.
- Work can be calculated be finding the area under the Force vs Distance curve.
- The work done is equivalent to the Gravitational Potential Energy.

- Force $F=G \frac{m_{1} m_{2}}{r^{2}}$
- Potential Energy $\quad E_{p}=-G \frac{m_{1} m_{2}}{r}$
- Force at an infinite distance is 0
- Therefore, potential energy at an infinite distance must be 0
- Potential energy decreases as the distance decreases, therefore E_{p} must be negative

Total Energy

- The total energy of a satellite is its kinetic energy plus its potential energy

$$
E=\frac{1}{2} m v^{2}-G \frac{m_{1} m_{2}}{r}
$$

- After some manipulation, we can see that...

$$
E_{k}=G \frac{m_{1} m_{2}}{2 r} \quad \text { and } \quad E=-G \frac{m_{1} m_{2}}{2 r}
$$

Gravitational Potential

- Gravitational potential,V, is a field
- Defined at every point in space
- Scalar quantity
- Work done per unit mass in bringing a small point mass m_{p} from infinity to point P.
- If the work done is W, then the gravitational potential is the ratio of work done to the mass m_{p}

$$
V=\frac{W}{m_{p}}
$$

- The gravitational potential due to a single mass m a distance r from the center of m is

$$
V=-\frac{G m}{r}
$$

Potential Difference

- It is sometimes convenient to determine the change in gravitational potential or the potential difference between two points in the gravitational field.

$$
\Delta V=\frac{\Delta W}{m}
$$

But the change in work is the change in energy (potential in this case), so...

$$
\Delta V=\frac{\Delta E_{p}}{m}
$$

Gravitational Field Strength (again)

- It also should be noted that we can calculate the gravitational field strength in terms of gravitational potential

$$
g=-\frac{\Delta V}{r}
$$

Escape Velocity

- How fast do you have to go to escape the gravitational field of a planet (or any massive object)?
- The total energy of a moving object, m, near a large stationary mass, M, is

$$
E=\frac{1}{2} m v^{2}-G \frac{m M}{r}
$$

- At a long distance away (∞), then the mass, m, should only have kinetic energy
- Conservation of energy tells us that these two energies should be equal to each other
- Therefore, for the total energy, if
$-E>0$: mass escapes and never returns
$-E<0$: mass moves out a certain distance but is pulled back
- E=0: mass just barely escapes
- We use this third case to find the escape velocity

$$
\begin{gathered}
\frac{1}{2} m v^{2}-G \frac{m M}{r}=0 \\
v=\sqrt{\frac{2 G M}{r}}
\end{gathered}
$$

- This is the escape velocity for any planet
- Using gravitational field strength, g

$$
\begin{gathered}
g=G \frac{M}{r^{2}} \\
v=\sqrt{2 g r}
\end{gathered}
$$

Orbital Motion

- Kepler deduced that the planets orbited the sun in elliptical paths from observations made by Tycho Brahe
- Newton's law of universal gravitation and his second law of motion provide a theoretical understanding of Kepler's conclusions
- Consider a planet (mass=m) in a circular orbit of radius r, around the sun (mass $=M$)

$$
\begin{gathered}
F=G \frac{m M}{r^{2}} \\
G \frac{m M}{r^{2}}=\frac{m v^{2}}{r} \\
v=\sqrt{\frac{G M}{r}}
\end{gathered}
$$

- This also applies to satellites orbiting Earth (M would be the mass of Earth)
- What if we wanted to use period instead?

$$
\begin{gathered}
G \frac{m M}{r^{2}}=\frac{m 4 \pi^{2} r}{T^{2}} \\
T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}}
\end{gathered}
$$

- Kepler had experimentally discovered this relationship before Newton
- It is called Kepler's Third Law of Planetary Motion

$$
T \propto \sqrt{r^{3}}
$$

Weightlessness

- Why does an astronaut in a spaceship orbiting the Earth feel weightless?
- There is a gravitational force acting on the spaceship (and thus the astronaut)
- BUT
- The astronaut AND the spaceship are free falling (it just happens to be moving in a circle) and so there are no reaction forces from the floor of the spaceship

Equipotential Surfaces

- An equipotential surface is a graphical way of showing where the gravitational potential is the same

Gravitational Field Lines

- Gravitational field lines show the direction of the gravitational field

- Equipotential lines and field lines are perpendicular to each other.

